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a b s t r a c t

A quantitative structure property relationship (QSPR) study was performed to develop a model for
prediction of flash point of esters based on a diverse set of 95 components. The most five important
descriptors were selected from a set of 1124 descriptors to build the QSPR model by means of a genetic
function approximation (GFA). For considering the nonlinear behavior of these molecular descriptors,
adaptive neuro-fuzzy inference system (ANFIS) method was used. The ANFIS and GFA squared correla-
eywords:
lash point
ster
SPR
enetic function approximation (GFA)

tion coefficient for testing set was 0.969 and 0.965, respectively. The results obtained showed the ability
of developed GFA and ANFIS for prediction of flash point of esters.

© 2010 Elsevier B.V. All rights reserved.
daptive neuro-fuzzy inference system
ANFIS)

. Introduction

Ester compounds are a sort of important medical and chemical
aterials that use in many foods, cosmetics, medicines and chem-

cals. The flammability characteristics of esters are very important
or safety considerations in storage, processing, and handling. Flash
oint is one of the major quantities used to characterize the fire and
xplosion hazard of liquids [1,2]. Flash point is the lowest tempera-
ure, corrected to the standard atmospheric pressure of 760 mm Hg
101.3 kPa), at which application of a test flame causes the vapor of
specimen to ignite under specified test conditions [3]. In other
ords, flash point is the temperature at which the vapor pres-

ure divided by the pressure of the atmosphere is equal to the
ower flammability limit (LFL) expressed in mole fraction [3]. The
ash point can be determined by open or closed-cup methods [4].
xperimental flash point data is scarce in the literature, thus the
evelopment of theoretical prediction methods which are desirably
onvenient and reliable for predicting flash point is required.

One of the successful approaches for prediction of flash point is
uantitative structure property relationships (QSPR) [5–9]. By uti-
izing QSPR approach, Gharagheizi et al. [5] used a new collection
f 79 functional groups to correlate flash point temperature (FP)
f 1378 pure compounds. Katritzky et al. [6] developed a general
hree-parameter QSPR model for prediction of the flash point of a

∗ Corresponding author. Tel.: +98 21 64543176.
E-mail address: hmodares@aut.ac.ir (H. Modarress).

304-3894/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2010.03.060
diverse set of 271 compounds based on the multi-parameter regres-
sion. By using of the experimental boiling point as a descriptor,
their correlation improved resulting a value for squared correla-
tion coefficient R2 = 0.9529. In a subsequent work Katritzky et al.
[7] by using geometrical, topological, quantum mechanical and
electronic descriptors predicted the flash points of 758 organic
compounds by linear and nonlinear methods. Pan et al. [8] devel-
oped a back-propagation (BP) neural network based QSPR model
for the prediction of flash points of 92 alkanes using group bond
contribution method. Quantitative structure property relationship
(QSPR) and topological indices have been used by Patal et al. [9] to
predict flash point of different classes of solvents by multiple linear
regression and back-propagation neural network.

QSPR is a mathematical method that relates simple and complex
physicochemical properties of various compounds from numerical
descriptors derived from molecular structures. The advantage of
this approach over other methods lies in the fact that it requires
only the knowledge of chemical structure, and is not dependent
on any experimental properties [10]. In QSPR modeling different
computational techniques, such as multiple linear regression (MLR)
[10,11], partial least square analysis (PLS) [12], Multilayer per-
ceptrons (MLP) neural network [9,13], radial basis function (RBF)
neural network [11,14] and support vector machine (SVM) [15,16]
have been used.
Neuro-fuzzy as an intelligent computational method is one of
the most popular research fields which use ANNs theory in order to
determine fuzzy inference properties by processing data samples.
A specific approach in neuro-fuzzy development is the adaptive
neuro-fuzzy inference system (ANFIS), which has shown significant

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:hmodares@aut.ac.ir
dx.doi.org/10.1016/j.jhazmat.2010.03.060
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esults in modeling complex nonlinear systems with estimation
peed, simplicity, error free and capacity to learn from examples
17–19].

The aim of this work is to build new QSPR model that could
e used for predicting flash point of ester compounds from their
olecular structure. In this work, after obtaining the most sta-

istically significant descriptors by means of genetic algorithm
GA)-based variable-selection approach, the nonlinear behavior of
hese molecular descriptors for predicting flash point of ester was
tudied by means of a hybrid subtractive clustering ANFIS.

. Materials and methods

.1. Data set

In this work, the flash point dataset of 95 esters was taken from
20]. Flash point values of these compounds were in the range from
2 to 421◦F. The data set was randomly divided into two groups: a

raining set of 76 compounds and a test set of 19 compounds. The
raining set was used for model generation and the test set was
sed for evaluation of the prediction ability of obtained model.

.2. Molecular descriptors

To obtain QSPR model for each molecule more than 1000
olecular descriptors were calculated utilizing Dragon software

eveloped by the Milano Chemometrics and QSAR research group
21]. These descriptors can be classified into several groups:
onstitutional descriptors, topological descriptors, connectivity
ndices, information indices, 2D autocorrelations, Burden eigenval-
es descriptors, eigenvalue-based indices, geometrical descriptors,
HIM descriptors, GETAWAY descriptors, functional group counts,

tom-centred fragments, molecular properties.

.3. Genetic function approximation (GFA)

The GFA apply the genetic algorithms to the problem of func-
ion approximation [22]: given a large number of potential factors
nfluencing a response to find the subset of terms that correlates
est with the response. It works in the following way: first of all a
articular number of equations (e.g. 50) are generated randomly,
hen pairs of parent are selected from the present population, with
robabilities proportional to their fitness and crossovers are per-
ormed and progeny equations are generated. The goodness of each
rogeny equation is assessed by various score such as:

R-square:

2 = SSR
SST

(1)

here SSR is the sum of squares of regression, and SST is the total
um of squares.

Adjusted R-square:

2
adj = 1 − SSR/(n − p)

SSE/(n − 1)
(2)

here SSE is the sum of squares of errors, n is the number of data
oints from which the model is built, and p is the number of param-
ters in a regression model.

Friedman’s lack of fit (LOF):

OF = SSE
2

(3)

[1 − (c + (dp/n))]

here c is the number of basis functions (other than the constant
erm), d is a user defined smoothness factor, p is the number of
eatures in the model, and n is the number of data points from
hich the model is built.
dous Materials 179 (2010) 715–720

If the fitness of new progeny equation is better, then it is pre-
served.

2.4. Adaptive neuro-fuzzy inference system (ANFIS)

The ANFIS is a multilayer feed-forward neural network which
uses neural network learning algorithms and fuzzy reasoning in
order to combines the advantages of both neural and fuzzy infer-
ence.

Fuzzy logic modeling techniques can be classified into three cat-
egories, namely the linguistic (Mamdani-type) [23], the relational
equation, and the Takagi-Sugeno-Kang (TSK) [24]. Based on the TSK
model, an adaptive network based fuzzy inference system (ANFIS)
has been introduced by Jang [25]. In a TSK model with a rule base
of M rules, each giving p antecedents, the ith rule can expressed as:

Rule i: if xi is Fi
1 and . . . and xp is Fi

p, then:

yi(X) = ci
0 + ci

1x1 + ci
2x2 + . . . + ci

pxp = CiX (4)

where i = 1, 2, . . ., M, ci
j
(j = 0, 1, . . . , p) are the consequent param-

eters, yi(X) is the output of the ith rule, and Fi
k

(k = 1, 2, . . ., p) are
fuzzy sets.

The overall output, y(X), of the model is obtained by combining
the outputs from the M rules in the following prescribed way:

y(X) =
∑M

i=1f i(X)yi(X)∑M
i=1f i(X)

=
∑M

i=1f i(X)(ci
0 + ci

1x1 + . . . + ci
pxp)∑M

i=1f i(X)
(5)

where the fi(X) are rule firing level (strengths), defined as:

f i(X) = Tp
k=1�Fi

k
(xk) (6)

in which T denoted a T-norm, usually minimum or product.
In ANFIS architecture, a FIS is described in a layered, feed-

forward network structure, where some of the parameters are
represented by adjustable nodes and the others as fixed nodes. The
ANFIS structure contains five layers described below:

In the first layer, all the nodes are adjustable nodes. They gen-
erate fuzzy membership grades of the inputs and outputs of this
layer are given by:

O1,i = �Ai(x), i = 1, 2 (7)

O1,i = �Bi−2(y), i = 3, 4 (8)

where �Ai(x) and �Bi−2(y) can adopt any fuzzy membership function.
The second layer consist of fixed nodes represent the T-norm

operators that combine the possible input membership grades in
order to compute the firing strength of the rule. The outputs of this
layer are given by:

O2,i = wi = �Ai(x)�Bi(y), i = 1, 2 (9)

The output signal wi so-called the firing strength of a rule.
The third layer implements a normalization function and the

outputs of this layer can be represented as:

O3,i = w̄i = wi

w1 + w2
, i = 1, 2 (10)

In the fourth layer, the nodes are adjustable nodes and every node
i has the following function:

O4,i = w̄ifi = wi(pix + qiy + ri), i = 1, 2 (11)

where w̄i is the output of layer 3, and {pi, qi, ri} is the parameter
set.
The fifth layer represents the aggregation of the outputs per-
formed by weighted summation. The output is computed as:

O5,i =
∑

i

w̄ifi =
∑

iwifi
w1 + w2

(12)
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Table 1
The five molecular descriptors used in Eq. (13).

ID Molecular descriptor Type Definition

1 D/Dr05 Topological descriptors Distance/detour ring index of order 5
2 IVDM Information indices Mean information content on the vertex degree magnitude
3 IC0 Information indices Information content index (neighborhood symmetry of 0-order)
4 MATS5p 2D autocorrelations Moran autocorrelation – lag 5/weighted by atomic polarizabilities
5 G2s WHIM descriptors 2st component symmetry directional WHIM index/weighted by atomic electrotopological states

Table 2
Correlation matrix of the five descriptors used in QSPR model.

D/Dr05 IVDM IC0 MATS5p G2s

D/Dr05 1
IVDM −0.14248 1
IC0 0.212743 −0.47576 1
MATS5p 0.003483 0.181737 0.257629 1
G2s 0.47399 −0.33704 0.366479 0.227338 1

Table 3
Premise parameters.

Input 1 [�,c] Input 2 [�,c] Input 3 [�,c] Input 4 [�,c] Input 5 [�,c]

Rule 1 [2.204 −4.353E−011] [0.4124 2.253] [0.08873 1.156] [0.3891 −0.09068] [0.1447 0.2092]
Rule 2 [2.204 −4.353E−011] [0.4068 3.03] [0.06989 1.324] [0.4097 −0.03908] [0.1431 0.2406]
Rule 3 [2.204 −4.353E−011] [0.3984 3.775] [0.1382 1.439] [0.3943 0.00086] [0.1474 0.2998]

Table 4
Consequent parameters.

Consequent parameters Ci
1 Ci

2 Ci
3 Ci

4 Ci
5 Ci
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developed. The subtractive clustering algorithm is a modification of
the mountain method of Yager and Filev [28] and was introduced by
Chiu [29]. This method generates an ANFIS structure using the clus-
tering algorithm subtractive clustering and generates an FIS with
the minimum number of rules required to distinguish the fuzzy

Table 5
Squared correlation coefficient (R2) and root mean squares error (RMSE) for GFA
and ANFIS methods.

Data set GFA ANFIS

R2 RMSE R2 RMSE

Training set 0.9648 16.26704 0.9754 13.58811
Test set 0.9646 21.75769 0.9691 20.16043
Total 0.9642 17.50351 0.9732 15.13268

Table 6
Comparison between the presented models and previous models.

No. Model R2 RMSE

1 Tetteh et al. [31] 0.9326 13.1
2 Katritzky et al. [6] 0.9529 11.2
Rule 1 0.005274 235.7
Rule 2 4.082E−007 222.9
Rule 3 12.16 264

. Results and discussion

Based on the GFA (17000 iterations, R-square score, 50 popu-
ation size, 50% mutation probability) the following equation was
erived by using Materials Studio Software of Accelrys Inc. [26]
ith five descriptors:

P = 14.823500795
(

D

Dr05

)
+ 206.42085581(IVDM)

+ 267.756013902(IC0) − 34.357883234(MATS5p)

+ 94.539715611(G2s) − 885.235147504 (13)

D/Dr05 is a topological descriptor which is a distance/detour
ing index of order 5. Positive coefficient of this descriptor sug-
ests that existence of five-member ring group causes an increase
n the flash point of ester components. IVDM based on the par-
ition of vertices according to the vertex degree magnitude and
s a measure of molecular complexity together with some other
nformation indices derived from the distance matrix [27]. This
escriptor has a significant effect on flash point value than that of
he other descriptors. IC0 is an information content index which is
eighborhood symmetry of 0-order calculated from the molecular

ormula [27]. It reflects the branching and atom composition diver-
ity of a molecule. Increase in this descriptor increases the flash
oint. The 2D autocorrelation descriptor MATS4p, based on Moran
utocorrelation of topological Structure, describe how a consid-

red property is distributed along a topological molecular structure.
hen this descriptor increases the flash point decreases. G2s is 2st

omponent symmetry directional WHIM index which weighted by
tomic electrotopological states [27]. The coefficient for the G2s
escriptor is positive, meaning that increasing the molecular sym-
85.41 −22.56 −262.1 −663
39.05 −22.77 390.1 −738.1

165.5 −103 123.6 −856.2

metry can lead to enhancement of flash point value. The molecular
descriptors and their physical meanings are presented in Table 1.

The correlation matrix of the selected descriptors is given in
Table 2, which shows that the five descriptors are independent of
each other and could be used to develop a QSPR model.

In this work, the ANFIS model on the basis of the subtractive
clustering algorithm with inputs and outputs similar to GFA was
3 Katritzky et al. [7] 0.878 –
4 Gharagheizi and Alamdari [32] 0.9669 12.7
5 Gharagheizi et al. [5] 0.9757 11.206
6 Current work (GFA) 0.9642 17.50351
7 Current work (ANFIS) 0.9732 15.13268
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Table 7
Reported flash points in Ref. [20] and predicted flash points by QSPR model using GFA and ANFIS methods for the esters and calculated descriptors for QSPR model.

Reported flash points Predicted flash points Descriptors

GFA ANFIS IVDM IC0 MATS5p G2s

Train
1 Benzyl acetate 215 209.63590 200.210 3.391 1.357 −0.302 0.224
2 Benzyl benzoate 311 308.72830 291.090 3.962 1.296 −0.297 0.200
3 Sec-butyl acetate 60 83.23307 79.239 2.842 1.295 −0.333 0.250
4 Tert-butyl acetate 61 53.42044 53.261 2.753 1.295 0.00 0.250
5 Butyl acrylate 102 125.61830 118.700 3.078 1.313 −0.036 0.240
6 Butyl benzoate 223 241.25000 234.660 3.642 1.297 −0.212 0.213
7 Tert-butyl butanoate 116 109.41890 108.890 3.128 1.239 0.250 0.273
8 Butyl formate 64 74.92512 71.159 2.752 1.333 −0.300 0.263
9 Sec-butyl formate 78 85.97113 84.767 2.689 1.333 −1.000 0.263
10 Butyl methacrylate 126 139.52650 139.270 3.197 1.281 0.000 0.231
11 Decyl acetate 220 223.76100 226.960 3.748 1.167 −0.093 0.208
12 Decyl formate 211 212.45790 212.910 3.668 1.182 −0.114 0.213
13 Diallyl maleate 248 265.79630 257.670 3.719 1.46 0.867 0.235
14 Dibutyl maleate 284 274.37410 283.880 3.923 1.352 0.905 0.200
15 Dibutyl sebacate 352 377.45640 367.500 4.404 1.235 −0.164 0.183
16 Diethyl carbonate 77 94.45461 82.444 2.896 1.415 0.600 0.250
17 Diethylene glycol ethyl ether acetate 224 235.29900 227.760 3.516 1.379 −0.143 0.218
18 Diethyl maleate 199 201.84060 197.050 3.482 1.459 1.250 0.218
19 Diethyl oxalate 252 217.06540 239.020 3.197 1.485 −0.667 0.231
20 Diethyl phthalate 322 300.93050 303.930 3.906 1.429 0.630 0.200
21 Diethyl succinate 194 191.39810 192.980 3.482 1.42 1.250 0.218
22 Dimethyl maleate 235 236.91340 234.910 3.197 1.53 1.222 1.000
23 1,2-Dimethylpropyl acetate 109 104.18490 102.520 2.983 1.265 −0.357 0.240
24 2,2-Dimethylpropyl formate 100 98.92504 90.686 2.807 1.295 −1.000 0.250
25 2,2-Dimethylpropyl propanoate 142 123.86400 124.940 3.128 1.239 −0.286 0.231
26 Dimethyl terephthalate 313 302.89590 292.510 3.700 1.483 −0.222 0.208
27 Dodecyl acetate 240 256.90070 266.300 3.948 1.143 −0.065 0.200
28 Dodecyl butanoate 319 286.89760 301.570 4.124 1.124 −0.048 0.193
29 Dodecyl propanoate 299 276.10170 299.930 4.039 1.133 −0.056 0.236
30 2-Ethoxyethyl acetate 130 137.75860 126.150 3.078 1.379 0.125 0.240
31 Ethylacetoacetate 135 146.81040 145.160 3.031 1.433 0.000 0.240
32 Ethyl acrylate 60 55.80975 50.691 2.689 1.4 0.400 0.263
33 Ethyl benzoate 190 205.61600 197.530 3.391 1.357 −0.185 0.224
34 Ethyl cyanoacetate 230 188.88110 220.150 2.896 1.689 −0.013 0.250
35 Ethylene carbonate 305 305.00000 305.000 2.522 1.571 0.000 0.679
36 Ethylene glycol diacetate 190 182.70750 188.680 3.197 1.485 0.333 0.231
37 Ethyl formate 25 −8.10189 8.5227 2.250 1.435 0.000 0.301
38 2-Ethylhexyl acetate 190 180.40090 178.210 3.482 1.198 −0.160 0.218
39 Ethyl isobutanoate 57 60.35072 56.375 2.842 1.295 0.333 0.250
40 Ethyl isovalerate 95 92.00100 94.298 3.031 1.265 0.286 0.240
41 Ethyl lactate 115 110.79420 117.840 2.842 1.415 −0.200 0.250
42 Ethyl methacrylate 70 75.61281 66.299 2.842 1.352 0.333 0.250
43 1-Ethylpropyl acetate 112 114.09310 111.470 3.031 1.265 −0.357 0.240
44 Glyceryl triacetate 280 312.92270 306.640 3.771 1.501 0.042 0.204
45 Heptyl acetate 169 166.68520 164.750 3.384 1.217 −0.185 0.224
46 Hexyl formate 134 133.49670 129.610 3.125 1.265 −0.357 0.240
47 Isobutyl acrylate 88 122.54760 114.470 3.031 1.313 −0.229 0.240
48 Isobutyl butanoate 135 134.01850 135.130 3.197 1.239 −0.167 0.231
49 Isobutyl formate 84 85.97113 84.767 2.689 1.333 −1.000 0.263
50 Isobutyl isobutyrate 100 125.34880 127.210 3.155 1.239 −0.167 0.231
51 Isopentyl acetate 77 103.06420 103.160 3.031 1.265 −0.036 0.240
52 Isopentyl formate 105 86.75234 81.673 2.896 1.295 −0.111 0.250
53 Isopentyl isovalerate 171 166.68250 167.030 3.447 1.198 0.029 0.218
54 Isopentyl propanoate 138 128.28070 131.370 3.197 1.239 0.000 0.231
55 Methyl acetate 14 −27.50540 −14.831 2.156 1.435 0.000 0.301
56 Methyl acrylate 26 36.70287 59.801 2.446 1.459 0.000 0.279
57 Methyl benzoate 181 192.24620 177.170 3.246 1.392 −0.375 0.231
58 Methyl butanoate 57 37.87009 29.554 2.689 1.333 0.400 0.263
59 Methyl chloroacetate 125 125.33010 120.310 2.446 1.79 0.000 0.279
60 Methyl dodecanoate 242 241.08780 247.370 3.852 1.155 −0.077 0.204
61 Neopentyl acetate 109 97.99229 97.072 2.953 1.265 −0.357 0.240
62 Nonyl acetate 186 206.05890 206.210 3.637 1.182 −0.114 0.213
63 Octyl acetate 188 186.83510 184.850 3.516 1.198 −0.143 0.218
64 Octyl butanoate 220 223.76100 226.960 3.748 1.167 −0.093 0.208
65 Octyl formate 175 174.52920 172.130 3.422 1.217 −0.185 0.224
66 Pentyl butanoate 162 166.68520 164.750 3.384 1.217 −0.185 0.224
67 Pentyl propanoate 146 149.51050 145.190 3.239 1.239 −0.250 0.273
68 Propyl acetate 59 61.92061 63.139 2.689 1.333 −0.300 0.263
69 Propyl acrylate 101 102.01440 92.698 2.896 1.352 −0.111 0.250
70 Propyl methacrylate 120 115.91650 109.270 3.031 1.313 −0.036 0.240
71 Undecyl acetate 256 241.08780 247.370 3.852 1.155 −0.077 0.204
72 Undecyl butanoate 299 272.41460 284.750 4.039 1.133 −0.056 0.197
73 Undecyl formate 234 229.74720 233.340 3.777 1.167 −0.093 0.208
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Table 7 (Continued )

Reported flash points Predicted flash points Descriptors

GFA ANFIS IVDM IC0 MATS5p G2s

74 Undecyl propanoate 278 256.90070 266.300 3.948 1.143 −0.065 0.2
75 Vinyl formate −2 17.33493 28.000 2.250 1.53 0.000 0.301
76 Vinyl propionate 34 55.80975 50.691 2.689 1.4 0.400 0.263

Test
77 Butyl acetate 71 86.75234 81.673 2.896 1.295 −0.111 0.250
78 Butyl butanoate 128 136.95040 139.410 3.239 1.239 0.000 0.231
79 Butyl propanoate 90 117.39850 105.460 3.078 1.265 −0.036 0.289
80 Dibutyl phthalate 315 349.02070 335.830 4.246 1.342 0.562 0.188
81 Diethyl malonate 199 231.49430 220.030 3.346 1.451 −0.476 0.224
82 Dimethyl phthalate 295 274.65370 270.750 3.700 1.483 0.600 0.208
83 Dioctyl phthalate 421 421.80280 423.190 4.753 1.234 0.604 0.172
84 Ethyl acetate 25 15.28239 29.917 2.446 1.379 0.000 0.279
85 Ethyl butanoate 78 71.49744 67.016 2.896 1.295 0.333 0.250
86 2-Ethylhexyl acrylate 160 208.11160 203.580 3.605 1.211 −0.140 0.213
87 Ethyl propanoate 54 37.87009 29.554 2.689 1.333 0.400 0.263
88 Isobutyl acetate 64 83.23307 79.239 2.842 1.295 −0.333 0.250
89 Isobutyl propanoate 117 109.69530 108.230 3.031 1.265 −0.229 0.240
90 Isopropyl acetate 36 38.60873 40.625 2.626 1.333 0.000 0.263
91 3-Methylbutyl butanoate 156 155.33020 159.410 3.346 1.217 0.019 0.261
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five descriptors that were selected because they maximize the per-
formance of the GFA model, but as can be seen in this table, these
descriptors are efficient for ANFIS. Therefore, five selected descrip-
tors and ANFIS method are convenient for prediction of flash point
of ester. It is worth noting that the D/Dr05 descriptor for ethylene
92 Nonyl formate 189 193.8
93 Pentyl formate 114 113.1
94 Tetradecyl formate 319 277.3
95 Vinyl acetate 17 36.7

ualities associated with each of the clusters. The purpose of clus-
ering is to identify natural groupings of data from a large data set
o produce a concise representation of a system’s behavior [30]. The
dvantage of the subtractive clustering algorithm is the fact that the
umber of clusters does not need to be specified in advance and the
lgorithm itself determines the number of clusters. However, four
ther parameters, the cluster radius, the squash factor, accept and
eject ratio need to be set. In this method, the total number of fuzzy
ules is only related to the number of clusters. Hence, it will be a
orrect choice to use this algorithm for solving the problems with
he large number of input dimension. The Gaussian membership
unction defined in Eq. (14) used in the ANFIS model.

(x; �, c) = exp

(
− (x − c)2

2�2

)
(14)

here c and � are parameters of the membership function, govern-
ng the Gaussian functions accordingly.

Hybrid learning rule is used to train the model according to
nput/output data pairs. A hybrid algorithm can be divided into for-

ard pass and a backward pass. The forward pass of the learning
lgorithm stop at nodes at layer 4 and the consequent parameters
re identified by least squares method. In the backward pass, the
rror signals propagate backward and the premise parameters are
ndated by gradient descent. It has been proven that this hybrid
lgorithm is highly efficient in training the ANFIS [25]. The premise
nd consequent parameters that have been optimized by hybrid
lgorithm are given in Tables 3 and 4. All ANFIS calculations were
arried out using Matlab mathematical software with fuzzy logic
oolboxes for windows running on a personal computer.

To compare the prediction abilities of the methods, two sta-
istical parameters namely root mean squares error (RMSE) and
quared correlation coefficient (R2), were calculated and the results
re shown in Table 5.

2 = 1 −
∑n

i=1(yexp
i

− ycalc
i

)
2∑n 2

(15)

i=1(yexp

i
− ȳ)

MSE =

√∑n
i=1(yexp

i
− ycalc

i
)
2

n
(16)
191.920 3.550 1.198 −0.143 0.218
103.500 2.950 1.295 −0.556 0.250
290.090 4.063 1.133 −0.056 0.197

59.801 2.446 1.459 0.000 0.279

where yexp
i

, ycalc
i

, and ȳ are values of experimental, calculated and
average of calculated property and n is the number of compounds in
dataset. The results show the ability of GFA and ANFIS methods and
also indicate that ANFIS model is more accurate than GFA model.

Although, no similar work has been done by the approaches
employed in this work for this group of compounds, but a com-
parison between this work and other QSPR works for estimating
the flash point of pure compounds included esters have been made
in Table 6.

The values of the descriptors for QSPR model and the flash points
reported in Ref. [20] and the flash points predicted by QSPR model
for training and test set are presented in Table 7. ANFIS method used
Fig. 1. Predicted flash points by GFA method vs. reported flash points [20].
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[31] J. Tetteh, T. Suzuki, E. Metcalfe, S. Howells, Quantitative structure–property
Fig. 2. Predicted flash points by ANFIS method vs. reported flash points [20].

arbonate with a five-member ring group has the value of 12.467
here as for the other compounds this descriptor has the value of

ero. However selecting D/Dr05 descriptor among more than 1000
escriptors indicates the important effect of a five-member ring
roup in flash point calculations.

The plot of predicted and reported flash points is shown in
igs. 1 and 2 that indicate excellent correlation between the
eported and predicted values and confirms the good predictive
bility of QSPR model.

. Conclusions

The QSPR model of the flash point of some esters was success-
ully developed based on various molecular descriptors by using
enetic function approximation (GFA) and adaptive neuro-fuzzy
nference system (ANFIS) methods. The squared correlation coef-
cient of 0.969 for ANFIS and 0.965 for GFA for testing set show
hat these methods have good predictive ability and robustness for
stimating flash point of esters.
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